Presenter: Yu-Hua Liou
Date: 2016/10/27
Abstract
One iterative constrained deconvolution technique, called projected Landweber deconvolution (PLD), is applied to solve the sismic deconvolution problem. In Bertero at al.,[1997], they apply PLD method to means of synthetic data, generated by the waveforms of a seismic swarm that occurred in the Ligurian Alps (north-western Italy) during July 1993, taking into account the indications provided by the simulations. The method has been applied to the inversion of real data, yielding satisfactory results also in the case of quite complex events. Howener, the apparent duration T of the RSTF is used as a free parameter in provious deconvolution procedure. In order to obtain a reliable estimate of T, in Lanza at al.,[1999], they show accurate and fairly objective estimates of RSTF where several PLD inversions are carried out using different values of this parameter. In these two papers, the PLD method is used to obtain the source time founctions (STF) by applying to more than two seismic events while in Bindi at al.,[2010], the PLD method is proposed for performing a deconvolution within the framework of downhole array inversion, applied to a surface and downhole pair of recordings, and also get reliable results. The above studies indicate that the implementation of PLD method is easy and efficient, so I am going to apply this methods to my future study.
Reference
M Bertero, D Bindi, P Boccacci, M Cattaneo, C Eva and V Lanza, “Application of the projected Landweber method to the estimation of the source time function in seismology”, Inverse Problems, Vol 13, pp. 465-486, 1997.
V. Lanza, D. Spallarossa, M. Cattaneo, D. Bindi and P. Augliera, “Source parameters of small events using constrained deconvolution with empirical Green's functions”, Geophysical Journal International, Vol 137, pp. 651–662, 1999.
D. Bindi, S. Parolai, M. Picozzi, A. Ansal, Seismic Input Motion Determined from a Surface–Downhole Pair of Sensors: A Constrained Deconvolution Approach”, Bulletin of the Seismological Society of America, Vol 100, pp. 1375-1380, 2010.